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Abstract: Effective multi-object tracking is still challenging due to the trade-off between tracking
accuracy and speed. Because the recent multi-object tracking (MOT) methods leverage object ap-
pearance and motion models so as to associate detections between consecutive frames, the key for
effective multi-object tracking is to reduce the computational complexity of learning both models.
To this end, this work proposes global appearance and motion models to discriminate multiple
objects instead of learning local object-specific models. In concrete detail, it learns a global appearance
model using contrastive learning between object appearances. In addition, we learn a global relation
motion model using relative motion learning between objects. Moreover, this paper proposes object
constraint learning for improving tracking efficiency. This study considers the discriminability of
the models as a constraint, and learns both models when inconsistency with the constraint occurs.
Therefore, object constraint learning differs from the conventional online learning for multi-object
tracking which updates learnable parameters per frame. This work incorporates global models and
object constraint learning into the confidence-based association method, and compare our tracker
with the state-of-the-art methods on public available MOT Challenge datasets. As a result, we achieve
64.5% MOTA (multi-object tracking accuracy) and 6.54 Hz tracking speed on the MOT16 test dataset.
The comparison results show that our methods can contribute to improve tracking accuracy and
tracking speed together.

Keywords: multi-object tracking; global appearance model; global relation motion model; object
constraint learning; affinity model; surveillance system

1. Introduction

Multi-object tracking (MOT) is the problem of finding states of multiple objects,
and then associating them accurately between consecutive frames. MOT has been ap-
plied to many applications, such as surveillance systems, autonomous driving, and sport
analysis over recent years. The tracking-by-detection paradigm is usually employed to
solve the MOT problem, and it has achieved impressive performance improvements. Once
detection responses are provided by a detector at each frame, the detections are linked (or
associated) across the frames.

According to the association manners, the tracking-by-detection methods can be cat-
egorized into batch and online methods. Batch-based MOT methods [1–8] exploit the
detection results of all frames. They can build longer tracks under occlusions and with
incomplete detections since they can achieve (temporal) global associations between long
frames. However, they cannot be utilized for the real-time system since they exploit de-
tections of all frames for iterative global association. On the other hand, online MOT
methods [9–17] sequentially build tracks based on the (temporal) local association with up
to current frame detections. For that reason, online MOT methods can suffer from occluded
objects or false detection rather than batch methods.
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For achieving high-quality MOT, improving data association is still important, and it
can be attained, usually, by improving affinity models for tracked objects. Object appearance
and motion models are used frequently since they are important cues for differentiating
objects. For improving the discriminability, object-specific model learning has flourished,
which generates and updates each object model independently. Refs. [14,15,18] apply single
object tracking (SOT) methods into MOT for generating a local object feature. In particular,
Ref. [13] exploits a SOT sub-network to capture short-term cues, and uses them for modeling
local interactions between objects and discriminating objects.

In [19], two ResNet-50 [20] networks are utilized for more accurate association, respec-
tively. However, the computational complexity of learning each object model is a significant
burden since the complexity is proportional to the number of objects.

For more effective association, several global object models have been developed [9,21–23].
Ref. [24] evaluates the affinity by using a sub-network to fuse discriminative appearance and
motion information. Ref. [25] utilizes a CNN-based correlation filter for tracking multiple
objects with geometric and appearance features.

Even though leveraging global object models for MOT is beneficial for reducing the
object model complexity, it is still challenging to develop an effective MOT method due
to the trade-off between tracking accuracy and speed. For effective MOT, we, therefore,
propose global object models which can discriminate different tracked objects accurately
while keeping low training and inference complexity. For our global models, we first
design a global appearance model using contrastive learning. Specifically, we extract high-
level semantic object features for tracked objects from a light ConvNet. We then define
positive (i.e., sample) and negative (i.e., different) object feature pairs in consideration of
their identifications. Based on the triplet loss [26], we then minimize the feature distance
between positive pairs, whereas maximize that of negative object pairs.

In addition, we present a global relation motion model to predict object future trajecto-
ries from their previous motions. We use each object past trajectory, and relative motions
between tracked objects as the main motion cues of the global relation motion model.
To improve motion prediction results, our global relation motion model mainly consists of
a generator and a discriminator, which are trained by using adversarial learning [27]. Even
though our global appearance and motion models are effective for computation, online
learning these models at each frame increases the MOT complexity. Therefore, we propose
an object constraint learning to update these models adaptively. Our main idea is to update
these models when the discriminability of those models is insufficient to differentiate
tracked objects. To achieve this, we define an object constraint of the model discriminability
and update the object models when inconsistency with the constraint occurs. In return, we
can reduce the online learning complexity as well. We apply our global appearance and
motion models, and the object constraint learning for the confidence-based data associa-
tion [9]. We achieve the better performance than our baseline MOT method. We described
our overall framework in Figure 1.

For a fair comparison, we evaluate our method on the public available MOT bench-
mark dataset, and provide extensive ablation studies and comparison results over state-the-
of-the-art MOT methods. The experimental results prove the effectiveness of our methods.

To sum up, the main contribution of this paper for effective MOT can be summarized
as follows:

• Proposition of the global appearance model for MOT using contrastive learning among
tracked objects;

• Proposition of the global relation motion model for MOT using adversarial learning
with object self motions and relative motions;

• Proposition of the object constraint learning to reduce the online learning computa-
tional complexity during the model update.

The rest of this paper is organized as follows: Section 2 discusses the related works
with our proposed method. Section 3 describes our online multi-object tracking method
with confidence-based object association and affinity models. Our global appearance model
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is proposed in Section 4. Section 5 presents our global relation motion model. Our object
constraint learning for effective multi-object tracking is shown in Section 6. We provide our
experimental results in Section 7. Finally, Section 8 concludes the paper.

Figure 1. The proposed MOT framework based on our global models and object constraint learning
algorithm. We describe our multi-object tracker in the upper box, and global models in the bottom
box. Our multi-object tracker consists of three parts. In (a), we describe the confidence-based data
association. During multi-object tracking, we calculate the affinity scores as depicted in (b). To de-
termine a frame of updating our global appearance model, we exploit the object constraint learning
algorithm as depicted in (c). We use our global appearance and motion models to improve the data
association quality. Our global appearance and motion models are shown in (d,e), respectively.

2. Related Works

In this section, we discuss previous researches which are related to multi-object track-
ing. Firstly, online multi-object tracking (MOT) methods are introduced in Section 2.1.
Then, we review the global appearance and motion model in Section 2.2 and Section 2.3,
respectively. They are closely related to our proposed multi-object tracking method.

2.1. Online Multi-Object Tracking

Under tracking-by-detection paradigm, online tracking methods perform tracking
with detections up to the current frame [9–15]. Therefore, online methods can be applied
for real-time systems (e.g., ADAS, autonomous driving). However, association failures by
occlusions occur more easily compared to batch methods [2,6,28,29]. Therefore, many meth-
ods focus on improving the data associations by learning affinity models [30]. To this end,
appearance, motion, and shape models are exploited as object affinity models [4,9,23,31,32].
Depending on sharing an affinity model or not, we can categorize multi-object tracking into
object-specific methods and global object methods. We provide the details of each method
in Section 2.1.1 and Section 2.1.2, respectively.
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2.1.1. Multi-Object Tracking with Object-Specific Models

Object-specific models are usually generated by learning each object affinity model and
use it for affinity evaluation or association between tracks or detections. Ref. [32] proposes
an object-specific appearance learning based on appearance discriminability measures and
a partial least square (PLS)-based subspace learning. In particular, the appearance and
motion models are considered as core affinity models when distinguishing objects.

In addition, several multi-object tracking methods [14,15,18] exploit single object
tracking (SOT) to learn object-specific features or models. Ref. [15] applies SOT with the
attention mechanism. Ref. [13] learns short-term and long-term cues for addressing ID
switches with a SOT and re-identification sub networks. Ref. [11] uses three independent
CNN models for capturing appearance changes of objects more accurately. Ref. [19] utilizes
two ResNet-50 networks to extract appearance and motion features. However, learning each
object model is rather inefficient because computational complexity is proportional to the
number of objects in the sequence. Ref. [33] presents an online multi-object tracking method
with target-specific metric learning and motion dynamics estimation for the association.

2.1.2. Multi-Object Tracking with Global Models

One of key ideas to enhance the tracking efficiency is to exploit global object models.
The global models discriminate appearance and motions of tracked objects [4,9,22,24,25,32,34].
AP_RCNN [35] exploits features from a CNN-based detector as an global appearance
model. Famnet [24] introduces an affinity sub-network to fuse discriminative higher-order
appearance and motion information for the affinity evaluation. In detail, a feature sub-
network is exploited for extracting features for target objects in an image frame, and an
affinity sub-network estimates the higher-order affinity. They present the multi-dimensional
assignment sub-network to find the global optimal assignments. Ref. [25] exploits a com-
pressed deep CNN feature-based correlation filter tracker to exploit geometric and semantic
information for the data association. They use ConvNet-based correlation filter (CCF) to
make the detector generate more accurate bounding boxes.

These global object models alleviate the computational burden of learning object mod-
els during tracking. However, developing efficient multi-object models is still challenging
due to the trade-off between tracking accuracy and speed.

To achieve effective object tracking, we also aim at learning global appearance and
motion models. By exploiting these global object models, we can extract high discriminabil-
ity appearance features and long-term future motions independently. We also design the
suitable affinity models based on our global appearance and the motion features to enhance
the data association during multi-object tracking. In addition, our object constraint learning
reduces the online learning complexity of the global models efficiently because the models
are updated according to their discriminability.

2.2. Global Appearance Model Learning

As discussed in Section 2.1.2, the global appearance model shows more effective-
ness compared to the object specific model. However, this global model shows the lower
discriminability power than the object specific model. Therefore, improving the model
discriminability is a key for accurate association. To this end, a CNN-based feature [35–39]
is often exploited as an appearance model due to its rich representation. Refs. [9,39] further
enhance a CNN feature by using Siamese networks [40]. Ref. [36] uses a modified triplet
loss of Siamese networks for extracting more robust features. MOTS R-CNN [37] develops
cosine-margin-contrastive and cosine-margin-triplet losses to improve the appearance
feature discriminability power. GTREID [38] proposes a graph neural-network-based multi-
object tracking framework. They exploit a class-based triplet loss in order to extract the
robust appearance features.

Some contrasting learning methods [41–43] are proposed to enhance self-supervised
learning performance with the contrastive learning [42] aims to tackle background the bias
problem in contrastive learning. Ref. [43] introduces a self-supervised objective trained
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with contrastive learning in order to disentangle object attributes from unlabeled videos.
Ref. [41] proposes contrastive learning method between the global image and the local
patch. They aim to learn consistent representation to enhance object-detection performance.
The difference between them and ours is we learn the appearance feature which can
identify the object, and utilize it for multi-object tracking directly. However, they only aim
to consistent representation to object detection performance.

In this work, we learn the global appearance model via the contrastive learning with
triplet loss. We use a lightweight ConvNet to extract high-level semantic features of tracked
objects efficiently. For association, we extract appearance features of tracked objects from
our global appearance model and compute the appearance affinity score by comparing
those features. Furthermore, our object constraint learning encourages the reuse of the
appearance model at most while the appearance model keeps its discriminability. As a
result, we can improve the MOT accuracy and the tracking speed together.

2.3. Motion Model Learning

Since the appearance model can be contaminated by appearance changes or occlusions,
learning motions of tracked objects is also important when predicting their motions or
evaluating motion affinities. However, it is still challenging to learn the object motion
accurately because of the abrupt camera motion changes or frequent occlusions by other
objects. To address this, there are many studies to learn multi-object motions.

The Kalman filter [44] is mostly adopted as an object motion model. It predicts the
current object state based on the previous states. Because of its high efficiency and flexi-
bility, many multi-object tracking methods still exploit it to learn object motions [45,46].
Optical flow is also widely used for multi-object tracking as an object trajectory predic-
tion method [47]. Among several traditional optical flow algorithms, Lukas–Kanade al-
gorithm [48] is frequently used for the motion prediction and object tracking. However,
these traditional methods are prone to under-perform under large motion videos. To
achieve robust accurate optical flow results, several works introduce deep neural networks.
FlowNet [49,50] predict dense optical flows of given images by using an encoder–decoder
architecture network and a correlation layer. PWC-Net [51] combines traditional optical
flow methods, such as image pyramid, warping, and cost volume with an end-to-end
trainable deep neural networks. RAFT [52] uses multi-scale 4D correlation volumes and a
recurrent unit to estimate optical flows in the video.

Furthermore, trajectory estimation methods [53–58] are suggested. They estimate
the future trajectories by considering the relations between each objects. The predicted
trajectories are useful for improving crowded scene tracking. Compare to the Kalman filter,
the additional benefit is that learning object motions every frame is not required.

In studies of [55,56], they use a LSTM model to predict the motion trajectory with
the relation between each pedestrian. Social-STGCNN [57] predicts the future trajectories
by building a spatial-temporal graph using observed trajectories. Social-NCE [58] adopts
contrastive loss in order to encourage keeping the positive event information from the
negative information.

In our work, we adopt the trajectory estimation method [56] as our the global relation
motion model in our MOT framework. To this end, we train this model on multi-object
tracking datasets [59] rather than training it on trajectory estimation datasets [54,60]. We
use this as our global motion model. Since it is difficult to capture local motion details
of each object using the global motion model, we use an additional self-motion model to
resolve this.

3. Online Multi-Object Tracking

In this section, we discuss our online multi-object tracking method. As mentioned in
Section 1, we choose the confidence-based object association algorithm [9] as our baseline
due to following reasons:
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(1) Recent multi-object tracking methods tend to improve the accuracy by applying
well-designed detection methods. For example, Refs. [2,28,61] exploit the Faster R-
CNN head [62] which is one of popular detection methods. By using the detection
method, they refine public detections by discarding false detections or correcting
misaligned detections before feeding it to multi-object tracking network. Moreover,
Ref. [63] attaches an appearance embedding feature head into a detector [64] in order
to identify the tracked object, as well as more accurate object localizations compared
to original public detections. They can improve the MOT accuracy but the overall
tracking speed degrades in return because of the computational cost for detection.
On the other hand, the confidence-based object association algorithm exploits public
detections without any manipulation and additional inputs by detection heads. To
improve the accuracy, this method aims to enhance the association quality which is
key for robust multi-object tracking regardless of the quality of object location by
detection methods.

(2) The confidence-based object association algorithm is one of representative multi-
object tracking methods which improves the tracking accuracy by applying adaptive
association methods (i.e., local association and global association) according to con-
fidences of tracked objects. However, their affinity models used for the association
are somewhat outdated. Therefore, in this work, we present more powerful affinity
global appearance (in Section 4) and motion models (in Section 5), and the constraint
learning method (in Section 6) to update affinity models effectively. As a result, we
can improve both tracking accuracy and speed considerably.

3.1. Confidence-Based Object Association

In this section, we introduce the confidence-based multi-object tracking [9] as our
baseline data association method. Before discussion, we denote detections from an object
detector at frame t as zt = [zx, zy, zw, zh], where zx, zy, zw, and zh are a x and y position,
width and height of a box, respectively. We define a set of detection as Zt at a frame t. We
denote Oi as a tracklet , and it can be associated with zt at each frame. Therefore, a tracklet
Oi =

{
zi

k|1 < ti
s < k < ti

e ≤ t
}

is a short trajectory between ti
s and ti

e which indicates start
and end time stamps. Therefore, the main problem of the frame-by-frame online association
is how to associate a Oi with a zi

t originated from this tracklet.
For the confidence association, we can evaluate the confidence of each Oi with its

length and continuity, and the affinity with an associated detection as follows:

C(Oi) |=
(

1
L∑k∈[ti

s ,ti
e ],vi(k)=1A

(
Oi, zi

k

))
×
(

1− exp
(
−β ·

√
(L− λ)

))
,

(1)

where C is a confidence function for a tracklet Oi and vi(t) is a binary function to repre-
sent an association event between Oi and zi

k. Thus, vi(t) = 1 means that an associated
detection zi

k for object i exists at frame t, otherwise vi(t) = 0. A(Oi, zi
k) is the total affinity

score computed by Equation (4). L is the length of the tracklet as L =
∣∣Oi
∣∣, and β is a

control parameter relying on the accuracy of detector. λ = ti
e − ti

s + 1− L is the number
of skipped frames in which the object i is missing due to occlusion by other objects or
unreliable detection.

When the confidence scores of a tracklet is calculated by Equation (1), we perform local
and global association adaptively according to its confidence. A tracklet Oi(high) with high
confidence can be regarded as a reliable tracklet. We determine the high confidence and
reliable tracklet as follows: (1) a longer tracklet can be considerable a reliable tracklet rather
than a shorter tracklet; (2) a tracklet less occluded can be more reliable due to lower track
fragment; (3) if a tracklet has high affinity score with an associated detection, we consider it
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as a reliable tracklet. Otherwise, a tracklet with a low confidence Oi(low) is regarded as an
unreliable tracklet.

We then categorize all tracklets into high- and low-confidence tracklets, and we apply
different association methods in each group. In the local association, we associate Oi(high)

with zt since Oi(high) has a higher possibility to be associated with zt. On the other hand,
in global association Oi(low) is associated with other tracklets or remained detections after
the local association. The reason is that these have a lower possibility of being associated
with detections due to the track occlusion. In addition, the global association between
tracklets can link fragmented tracklets.

Oi(high) is locally associated with a detection. When h tracklets with high confidence
and n detections Zt = {zj

t}n
j=1 are given at frame t, we compute a local association matrix

Slocal as follows:
Slocal

h×n = [sij], sij = −A(Oi(high), zj
t), zj

t ∈ Zt (2)

As discussed, a tracklet with low confidence Oi(low) is considered an unreliable or
fragmented tracklet. Therefore, we link this fragmented tracklet with other Oi(high) or a
detection zj

i . Here, zj
i should not be associated with any Oi(high) in the local association. We

assume that η non-associated detections (η ≤ n), and h and l tracklets with high and low
confidence, respectively. To link Oi(low), we conduct global association in consideration
of the following three possible events. Firstly, when Oi(low) is associated with Oi(high), we
denote an event A. If Oi(low) is terminated, we denote an event B. Lastly, we denote an
event C when Oi(low) is associated with zj

t.
Then, we define a global association matrix based on these association events as follows:

Sglobal
(l+η)×(h+l) =

(
Al×h Bl×l
−θη×h Cη×l

)
, (3)

where A = [aij] corresponds to the event A and aij = −A(Oi(low), Oj(high)) is an associ-
ation score evaluated with the affinity model Equation (4). The event B is modeled as
B = diag[b1, . . . , bl ], where bi = 1− C(Oi(low)) is the score to terminate Oi(low). The event C
is determined by cij = −A(Oi(low), zj

t).
By exploiting Slocal or Sglobal , we can determine optimal matching pairs in each matrix

by using the Hungarian algorithm [65].

3.2. Affinity Model

For the evaluation of a track confidence Equation (1) and the confidence-based associ-
ation Equations (2) and (3), evaluating affinities between objects is important. To compute
affinities accurately, we exploit several object models. We define object models of a tracklet
Oi as {A, S, M}, where A, S, and M are appearance, shape and motion models, respectively.
Using these models, we define a total affinity model as

A(u, v) = AA(u, v) · AS(u, v) · AM(u, v), (4)

where u and v are a tracklet or a detection. The appearance affinity is defined as follows:

AA(u, v) = exp
(
− 1

cA
· d(fu, fv)

)
, (5)

where cA (=47.5 in our experiment) is a hyper-parameter for tuning this affinity, and d(·) is
a L2 norm to evaluate a feature distance. fu and fv are the appearance features of u and
v, respectively. They can be extracted from a global appearance model as discussed in
Section 4.

To compute an affinity score between objects with their motions, we propose a novel
motion affinity AM(u, v) based on their self and relation motions as follows:
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AM(u, v) = cMAM
relation(u, v) + (1− cM)AM

sel f (u, v), (6)

where AM
sel f (u, v) is an motion affinity with self motions of u and v. We first predict each

object self-motion using a Kalman filter [44], and evaluate the motion difference as follows:

AM
sel f (u, v) =N

(
b̂tail

u + vF
uΘ; b̂head

v ΣF
sel f

)
×N

(
b̂tail

v + vB
uΘ; b̂tail

v ΣB
sel f

)
,

(7)

where b̂ is an updated position by Kalman filter. To compute this, we use the spatial
difference between the head (i.e., the first updated position) to tail (i.e., the last updated
position) of u and v head with time gap Θ. vF

u is the forward velocity, which is calculated
from the head to tail of u. Otherwise, the backward velocity vB

v is computed from the tail to
the head of v. We use the Gaussian distribution function for evaluating the spatial distance
affinity between the predicted positions with the velocity and updated positions.

In addition, we use theAM
relation(u, v) as an another motion affinity model based on our

global relation motion model. In some object tracking (e.g., pedestrian, car, etc.), it is useful
to exploit the relation motions caused by their interactions and group behavior. Since these
relation motions between objects are not captured by the self-motion model but these are
crucial for MOT, we exploit the relation motion for affinity evaluation, and learn a global
relation motion model using generative adversarial networks (GAN) [56]. We provide the
details of predicting each object motion by using this relation model in Section 5.

The main benefit of our global relation model is that we can predict motions of all
the tracked objects by considering other object motions from a certain frame to the next
∆est frames. Therefore, it is not necessary to learn this model per frame, and it reduces the
motion inference complexity. To combine both self and relation motion models effectively,
we introduce a weight parameter cM. We calculate cM by considering the range of motion
prediction 1 ≤ ∆ < ∆est of the relation model. When our global relation motion model
estimates the future motion, we set ∆ to 1. ∆ increases until our global relation model
predicts the new future motion again. We calculate cM as follows:

cM =
(∆est − ∆)

∆est
, (8)

When ∆ is a lower, we assign a higher weight to the relation model than the self-motion
model. The reason is that the accuracy of the estimated motions tends to be reduced as ∆ is
increased (We verify this from an experiment in Section 7.6).

This affinity model AM
relation(u, v) can be defined as follows:

AM
relation(u, v) = N

(
ŶΘ

u ; b̂head
v , ΣF

relation

)
, (9)

where N is a Gaussian distribution, ŶΘ
u is the updated position of u from a global relation

motion model with consideration of motion relation. b̂head
v is the first refined position of v,

and ΣF
relation is a connivance matrix. Here, we exploit the forward motion only to increase

tracking speed.
In order to consider the discrepancy of object sizes, we use a shape model for affinity

evaluation. The shape affinity is defined as follows:

AS(u, v) = exp
(
−cS ·

{
hu − hv

hu + hv
+

wu − wv

wu + wv

})
, (10)

where h and w are height and width of u and v, and cS (=1.5 in our experiment) is a tuning
parameter for shape affinity.
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4. Global Appearance Model

To achieve a robust association, object appearance is an important cue. Especially,
exploiting effective appearance models reduces association failures under occlusions and
appearance changes. In this section, we discuss our global appearance model. As we
mentioned in Section 1, we use a light ConvNet to extract high-level semantic object
features for tracked objects. With identifications of tracked objects, we define positive and
negative object feature pairs. Additionally, we exploit the triplet loss for minimizing the
feature distance between positive pairs but maximizing that between negative pairs.

4.1. Deep Feature Extractor

To extract the appearance features of objects, we use a modified ResNet-v2 network
called LuNet [66]. The input of LuNet is an 128 × 64 image patch. This network uses
LeakyReLU [67] as an activation function for a robust optimization as shown in [68],
multiple 3× 3 max-poolings with stride 2 instead of strided convolutions, and eliminates
the final average pooling layer of feature-maps in the last res-block as depicted in Figure 2.
From the multi-layer perceptron (MLP) layer of the last layer, we extract a 128-dimensional
embedding feature of an object. This network is lightweight (5 M parameters) compared
to other feature extraction networks (e.g., ResNet-50). We train this network with triplet
loss [26] for learning discriminable features. We provide the details of our training method
in the next section.

Figure 2. The architecture of our feature extractor. The ResBlock-BN means a resnet block bottleneck.

4.2. Triplet Loss

In order to discriminate tracked objects in consecutive frames, it is important to
compute the distance between object appearance features accurately. To this end, we train
our global appearance model based on the triplet loss [26]. We define an anchor xi

a, positive
xi

p, and negative xi
n objects with their IDs. The anchor means a targeted object. The positive

object has the same ID with the anchor object, but the negative object has a different one.
We can extract 128-dimensional embedding features by using the feature extractor f (·),
and denote f (xi

a), f (xi
p), and f (xi

n) as anchor, positive, and negative features. For increasing
the discriminability between objects, we should minimize a distance between xi

a and xi
p,

whereas maximize that between xi
a and xi

n, as shown in Figure 3. For achieving this, we can
define a triplet loss as:

Ltriplet = max
(

0, m + d
(

f (xi
a), f (xi

p)
)
− d
(

f (xi
a), f (xi

n)
))

, (11)

where d(·) is the distance function between two embedding vectors and m is a margin to
force the distance between positive and negative samples.

4.3. Online Hard Triplet Mining and Loss

Basically, the triplet loss is evaluated with distances of anchor/positive and an-
chor/negative pairs. Therefore, the sample pair selection largely affects this metric learning.
To determine the meaningful sample pairs during online tracking, we use online triplet
mining. We select possible triplets in each batch. Once embedding feature vectors are
extracted for tracked objects from our feature extractor, we construct sample triplets with
their object IDs. Based on different sample combinations, all sample features can be utilized
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as anchor, positive, and negative ones. We can select training sample triplets randomly in
a batch, and use those for the metric learning Equation (11). However, for more effective
learning, we present the online hard triplet mining. The basic idea is to use the hardest
positive and negative sample based on anchor. Here, the hard positive one has the lowest
affinity Equation (4) among positive samples in the batch. One the one hand, the hard
negative one has the highest affinity among negative ones. In the worse case, the affinity of
the positive pair is likely to be lower than that of the negative one. As discussed in [66],
exploiting these hard triplets is more effective than random training sample selection in
reducing the convergence time and enhancing the model accuracy.

Figure 3. The change of object feature distances by using the triplet loss. The positive and the negative
samples are connected with an anchor sample and indicated by green and red arrows, respectively.

Based on this idea, we can transform the conventional triplet loss Equation (11) into a
hard triplet loss as:

Lhard =
P

∑
i=1

K

∑
a=1

[
m + max

p=1...K
d
(

f (xi
a), f (xi

p)
)

− min
j=1...P
n=1...K

j 6=i

d
(

f (xi
a), f (xj

n)
)]

+
,

(12)

where [·]+ is a hinge loss, P is the number of distinguished object IDs, and K means the
number of sample images per class. i and j are class indices (i 6= j). The second and third
terms represents positive and negative hardest sample selection, respectively. By using
these difficult samples for training our model f (cot), we can improve the discriminability
of our model further. We provide some instances for hard positive and negative samples in
Figure 4. As shown in Figure 4, the hard negative one with different object IDs looks similar
to the anchor because both persons wear the similar clothes. However, the hard positives
for the same person seem to be different appearances due to the viewpoint changes.

Figure 4. Examples of an anchor, hard negative, and hard positive samples.
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5. Global Relation Motion Model

It is important to predict an object future trajectory accurately for achieving the high
quality of MOT. As mentioned in Section 3.2, we use self and relative motion models for
evaluating the motion affinity. In this section, we present our relative motion model and
learning method in detail.

Considering the relative motion is one of the key ideas to estimate future trajectories
more accurately because the motion of an object (e.g., pedestrians, obstacles, etc.) can be
influenced by nearby objects and obstacles during tracking. Due to this reason, some recent
studies estimate multi-object trajectories in consideration of the relative motion with non-
linear model such as LSTM [55,56]. Therefore, we also use relative motions for estimating
global motions for all tracked objects.

For estimating the future trajectory, our global relation motion model exploits consec-
utive δobs frames (δobs = 5 in our experiment). Therefore, an input of this model is a set of
motion trajectories X =

{
Xt−δobs−1, . . . , Xt

}
from previous t− δobs − 1 to current t frames,

and the output is a set of estimated trajectories Ŷ =
{

Ŷt+1, . . . , Ŷt+∆est

}
to the next t + ∆est

frames. Xt and Ŷt are tracked object trajectories consisting x and y coordinates for previous
and future frames, respectively.

Our global relation motion model is trained based on the adversarial learning to under-
stand distributions of various and relative motions. We explain the details of the adversarial
learning in Section 5.1. Our model consists of two networks, the trajectory generator G
and discriminator D. The generator G captures the distribution of the motion history and
estimates future motions. The discriminator D computes the confidence score for ground
truth trajectory Y or the predicted trajectory Ŷ. We provide the detailed structures of G and
D in Section 5.2.

5.1. Generative Adversarial Networks

In this section, we first review the traditional generative adversarial networks [27]
in brief before introducing our motion learning method. Basically, a generator and a
discriminator are trained by exchanging the feedbacks of the other network. Therefore,
a generator G tries to capture the sample distribution of a trained dataset and tries to
generate more realistic samples for deceiving a discriminator D. Ideally, the distribution
of generated samples is close to the distribution of real samples. A generator G takes a
latent vector z as its input, and outputs the generated sample G(z). On the other hand,
a discriminator takes the real sample from a trained set or the fake sample generated from
a generator. The output of D(·) is the confidence score of a sample. Thus, the loss of this
adversarial learning is usually represented based on the two-player min–max game as
follows [27]:

Ladv = min
G

max
D

Ex∼pdata(x)[log D(x)]+

Ez∼pz(z)[log (1− D(G(z)))],
(13)

where pdata and pz are the distributions of the given dataset and the generated sample,
respectively. We can extend this loss for the global motion learning. For trajectory generation,
we define the following adversarial loss LM

LM = min
G

max
D

EY∼pdata(Y)[log D(Y)]+

Ez∼pz(z)[log (1− D(G(z,X∗)))],
(14)

where Y is the ground truth motion, and X∗ is the selected trajectory with the highest
precision over Y).

One of main difficulties of training a global relation motion model is the unstable
motion estimation due to the limited samples (i.e., trajectories). In fact, the object motions
are too diverse, but the collected trajectories during tracking are very limited to handle all
cases. To encourage the motion models to predict diverse motions, we randomly sample the
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latent vector z with N (0, 1) for NT times (NT = 20 in our case). Therefore, we can generate
NT trajectories per one sample in the generator. Even though we can use all the generated
samples for training, we use Top-1 sampling for handling the sensitivity issue. We choose
the closest one X∗ to a real trajectory, and the selected one for the adversarial learning
Equation (14). By using the Top-1 sampling, we can increase the diversity of predicted
motions rather than using all the generated samples.

5.2. Generator and Discriminator

In this section, we discuss the structures of the generator G and the discriminator D.
We describe the overall architecture of our global relation motion model with a generator G
and a discriminator D in Figure 5. The details of each network are explained as below.

Figure 5. The architecture of our global relation motion model.

5.2.1. Generator

In order to estimate motions of each object during online tracking, the generator G is
exploited. We construct X with x and y coordinates of all tracked objects during multi-object
tracking. The generator G consists of three networks: an encoder, a pooling module, and a
decoder. The details of each network are explained as below.
Encoder: From the encoder, we can learn hidden states hi(e)

t of each object i at current
frame t with its previous motions and hidden states. An encoder extracts a motion em-
bedding vector with a fully-connected layer with LeakyReLU, and outputs hidden states
hi(e)

t of an object i with a LSTM [69]. Then, we feed the learned hidden state hi(e)
t to the

pooling network.
Pooling module: To consider relative motions between objects, we use a pooling module.
The pooling module first calculates relative positions between an object and other different
objects. These relative positions are calculated by subtracting x and y coordinates of targeted
object and other objects. They are concatenated with each object’s hidden states. Then, they
are embedded by a MLP with LeakyReLU independently. Lastly, embedded vectors are
pooled (we use max-pooling in our research) to calculate a pooling vector Pi

t of each object i.
By using a pooling vector Pi

t , we can summarize relative information, and use it to predict
the future trajectory in a decoder.
Decoder: The decoder consists of two MLPs and a LSTM network. As an input of this,
we use the outputs of the encoder and pooling module. We concatenate the hidden state
hi(e)

t , the pooling vector Pi
t , and a latent vector z. This feature represents the object motion

hi(e)
t and the relation motion between the object and other objects Pi

t . Then, z is embedded
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additionally to estimate i-th object feature motions in consideration of the object’s direction
and speed with learned motion distributions. The concatenated features are passed into the
LSTM of the Decoder, and this network outputs a hidden state hi(d)

t . The last MLP predicts

future trajectories of each object using hi(d)
t . Then, we concatenate hi(d)

t , Pi
t , and z. Then,

we feed the concatenated feature to the LSTM iteratively until the decoder predicts ∆est
trajectories.

5.2.2. Discriminator

The discriminator D consists of an encoder and a MLP as a classifier. The input of D is
a ground truth trajectory (i.e., real) and predicted trajectory (i.e., fake) by the decoder. Then,
an encoder of D extracts hidden features for the input trajectory similar to the encoder of G.
It then predicts hidden states recursively to refine them more. By feeding the last hidden
state of the encoder into a fully-connected layer, we can predict the classification confidence
whether the input trajectory is a real one or not. The confidence of D is used for computing
the LM Equation (14).

6. Object Constraint Learning

In this section, we introduce our object constraint learning method for controlling the
update schedule of our global appearance model. As we discussed in Section 1, online
learning of our global models at every frames increases the MOT complexity. We assume
that the appearance features have enough discriminability to evaluate the affinity between
objects at future frames. Based on our hypothesis, we can enhance the tracking speed and
accuracy simultaneously by updating models adaptively according to discriminability of
object models. To this end, we propose an object constraint learning in this section. Our
idea is simple and easy to implement. We only update our model when inconsistency with
the constraint occurs.

To reduce the number of updates for our global appearance model, we consider the
discrimiability of appearance features. We use the correlation of the object appearance
between consecutive frames for calculating discriminability of the appearance feature.
If objects has no abrupt appearance change during several frames, the appearance features
extracted at these frames are similar. Therefore, we can utilize the appearance feature
of the past frame for tracking at the current frame. However, when the features have a
low similarity because of appearance change or occlusion, we should update features in
the current frame. We describe these situations in Figure 6. As shown, the highlighted
pedestrian within the red box in Figure 6a shows low appearance variation at frames. In this
case, it is not necessary to update the object appearance model because the appearance
feature extracted at 150 frame has enough discriminability to distinguish the same object at
165 frame. On the other hand, the highlighted pedestrian within the red box in Figure 6b
shows the drastic appearance change at 436 frame because of the occlusion by other
pedestrian. In this case, we need to update our appearance model at 442 frame to distinguish
an occluded object.

To measure discriminability of an appearance model at frame t, we calculate ρt with
the appearance affinity AA(Oi, Oj) between two different tracklets Oi and Oj. We define ρt
as follows:

ρt = 1− 1
N2

t − Nt

(
Nt

∑
i=1

Nt

∑
j 6=i
AA(Oi, Oj)

)
, (15)

where Nt is the number of tracklets at frame t. Using Equation (15), we compute the average
appearance affinity score. To set ρt in [0, 1], we conduct min–max normalization for each
AA(Oi, Oj).

If ρt is close to 1, we consider our global appearance model has the sufficient discrim-
inability to distinguish objects. We set a threshold µ to 0.6 for our experiment. µ is tuned
manually for high-quality multi-object tracking by considering tracking accuracy and track-
ing speed together. When ρt > µ, we do not update the appearance model, because our
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model still maintains high discriminability. Otherwise, we update the model at frame t.
In addition, we update object appearances when a new object appears or an existing track
is terminated. To sum up, we update our global appearance model based on the following
two constraints:

• Constraint 1: ρt becomes lower than µ;
• Constraint 2: Nt 6= Nt−1.

For ease of implementation, we present Algorithm 1 for our object constraint learn-
ing with the global appearance model. In addition, we provide the overall multi-object
tracking algorithm based on our proposed global model and object constraint learning in
Algorithm 2.

(a)

(b)

Figure 6. Examples of appearance changes in two different sequences. (a) Low appearance variation of
a tracked object during tracking. (b) Abrupt appearance variation of an occluded object at frame 436.

Algorithm 1: Object constraint learning for the global appearance model

Input : Tracklets {Oi}Nt
i=1 at frame t, and Nt−1

Output : Updated discriminability measure ρt

1 ρt ← 0, k← 0
2 Initialize an appearance dissimilarity array L = 0 with Nt elements
3 for i = 1 to Nt do
4 for j = 1 to Nt do
5 if i 6= j then
6 L[k]← AA(Oi, Oj)
7 k← k + 1
8 end
9 end

10 end
11 Perform minmax normalization for L
12 for i = 1 to k do
13 ρt ← ρt + L[i]
14 end
15 ρt ← 1− ρt

Nt
2−Nt

;
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Algorithm 2: The overall MOT algorithm with the proposed global models
and object constraint learning

Input : A set of detections Zt, a set of tracklets {Oi}Nt
i=1, and Nt−1

Output :Updated tracklets {Oi}Nt
i=1

1 // Step1: Confidence-based data association;
2 // Local association;
3 for i = 1 to h do
4 for j = 1 to n do
5 Compute local association matrix Slocal

h×n = [sij] by Equation (2)
6 end
7 end
8 Optimize Slocal

h×n for local association
9 // Global association;

10 for i = 1 to l + η do
11 for j = 1 to h + l do
12 Compute a global association matrix Sglobal

(l+η)×(h+l) by Equation (3)

13 end
14 end

15 Optimize Sglobal
(l+η)×(h+l) for global association

16 // Step2: Model and confidence update;
17 Compute ρt using Algorithm 1
18 for i = 1 to Nt do
19 if Nt 6= Nt−1 then
20 Update Oi{A} by a global appearance model
21 Update Oi{M} by a global motion model
22 end
23 else
24 if ρt < µ then
25 Update Oi{A} by a global appearance model
26 end
27 if ∆ > ∆est then
28 Update Oi{M} by a global motion model
29 end
30 end
31 Update Oi{S}
32 Update the confidence of Oi by Equation (1)
33 end

7. Experimental Results

In this section, we verify the effectiveness and benefits of our proposed method. We
compare our method with other multi-object tracking methods and make ablation studies
on MOT challenge datasets.

7.1. Datasets

To prove the effectiveness of our method, we exploit the 2016 multi-object tracking
challenge benchmark dataset (MOT16) [70] for pedestrian tracking. This dataset consists
of 7 training and 7 test sequences with different video frame rates captured by static or
dynamic cameras. Additionally, they are captured from various locations (e.g., a large
square, day/night street scene, and busy shopping mall and intersection) and viewpoints
(e.g., elevated viewpoint, front viewpoint, and side viewpoint). Furthermore, the crowded
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density of objects is different from each other. To compare on the fair and same circumstance,
we only exploit public detections and ground truth provided in the MOT16 challenges.

For training our global appearance model, we use the Market-1501 [71] dataset, which
is constructed to handle a person re-identification problem. This dataset has person location
information as bounding boxes from a person detector. This set contains 32,668 images of
1501 people. Then, this set is divided into training and test sets of 12,936 and 19,732 images
for 750 and 751 persons, respectively. For training our global appearance model, we exploit
the training set as done in [71].

To learn our global relation motion model, we exploit ETH [54], UCY [60], and MOT15
datasets. They represent pedestrian trajectories in real world coordinates. Thus, this dataset
provides the frame number, person ID, and x, y, and z positions per image. As shown in
Figure 7, this dataset contains videos captured only from top-view and statics cameras.
For improving the robustness of our global relation motion model over geometric motion
variations, we use the MOT15 dataset which contains sequences from various and dynamic
viewpoints. The MOT15 dataset consists of 11 training and 11 test sets. For training, we use
7 training sets which are not overlapped with the MOT16 dataset.

Figure 7. Examples of ETH and UCY datasets.

7.2. Implementation Details

Basically, we have implemented our MOT system based on Algorithm 2. We have
tuned all hyper-parameters for the confidence-based multi-object tracker from the empirical
search. However, the determined parameters are fixed for all evaluations. We use C++14
and the Armadillo library [72].

The network of our global appearance model outputs 128-dimensional embedding
vectors from the input object images. We tune the appearance embedding feature dimen-
sionality to 128 by considering both MOT accuracy and speed as shown in Section 7.5.3. We
set the mini-batch for training the appearance model by using the online triplet mining [26]
as mentioned at Section 4.3. In our mini-batch, we use 4 images for 32 different persons.
Thus, the mini-batch size is 128. We tuned the margin m to 0.6 in Equation (11). The Adam
optimizer with β2 = 0.9 is used. When training the global appearance model, we set the
initial learning rate to 5× 10−4.

We also train the discriminator D and generator G for our global relation motion model.
The mini-batch for training this model includes GT object trajectories during δobs + ∆est
frames. In this experiments, we tuned the observation range δobs and prediction range
∆est to 5 and 8, respectively. We use the Adam optimizer with β2 = 0.999 to train the
discriminator D and the generator G. We set the initial learning rate of D and G to 10−4 and
10−3, respectively. We exploit the gradient clipping method for training D and G to avoid
gradient exploding, and set threshold for gradient clipping to 0.2 in order to prevent the
model divergence during training. We use PyTorch [73] for implementation of our global
relation motion model.



Sensors 2022, 22, 7943 17 of 28

All our experiments are conducted on a single NVIDIA TITAN Xp GPU and an Intel
i7-8700K CPU.

7.3. Performance Evaluation Metrics

To measure the multi-object tracking performance, we use metrics used in the MOT
benchmark challenge. The details of the metrics can be found in [74]. We use the follow-
ing metrics: multi-object tracking accuracy (MOTA ↑), multiple object tracking precision
(MOTP ↑), ID F1 Score (IDF1 ↑), the ratio of mostly tracked trajectories (MT ↑), the ratio
of mostly lost trajectories (ML ↓), the number of false positive (FP ↓), the number of false
negative (FN ↓), the number of identity switches (ID Sw. ↓), and multi-object tracking speed
(HZ ↑). ↑ and ↓ represent higher and lower scores, respectively.

MOTA score is widely exploited to measure the accuracy of multi-object tracking
methods. MOTA is calculated as follows [70]:

MOTA = 1− ∑t (FNt + FPt + IDSWt)

∑t GTt
, (16)

where, t is the frame index. GTt, FNt, FPt, and IDSWt mean that the number of ground
truth, false negative, false positive, and ID switch at frame t, respectively. As shown in
Equation (16), FP, FN, and ID Sw. are considered the important metrics to calculate tracking
accuracy. Note that, ID Sw. occurs when tracked identity is different with its matched
ground truth identity [75]. MOTP is a metric which indicates the average dissimilarity
between every true positives and their corresponding ground truth [70]. IDF1 score in-
dicates the ratio of correctly identified detections over the average of ground truth and
computed detections. MT and ML are employed to measure the the tracking methods cover
the ground truth trajectories by predicted track. If the predicted track covers at least 80% of
ground truth, it is regarded as mostly tracked (MT). On the other hand, it is considered as
mostly lost (ML) when it covers less then 20% of ground truth.

7.4. Comparison on the MOT Benchmark Challenge

To compare with other state-of-the-art MOT methods, we evaluate our MOT method
on the MOT benchmark challenge website. In Table 1, we show the evaluation results of
our and other MOT methods. For the fair evaluation, we only use the public detections
provided by the 2016 multi-object tracking challenge. For reliability, we present the scores
of MOT methods that have achievements opened in journals or conferences. We exploit our
global models and shape model for calculating affinity scores, and object constraint learning
algorithm for enhancing tracking speed. Additionally, we apply our object constraint algo-
rithm for all sequences. Our proposed method shows better multi-object tracking accuracy
and speed than [5,19,32,76]. Refs. [11,13–15,29] show higher MOTA scores, but much lower
tracking speed than our proposed method. In addition, our proposed method shows a
lower number of ID switches than [5,11,14,15,19,32,76–80]. t represents that our proposed
global models can improve the data association quality.

Note that our proposed method has higher tracking speed than most multi-object
tracking methods. As mentioned, our object constraint learning indeed contributes to
reduces the number of model updates. Even though the speed of [77,81] is faster than
ours, but our method is superior to them in terms of the accuracy. For the tracker-level
comparison, we also refine the original public detection using the CenterNet and then
feed them to our tracker, as done in other trackers [2,28,61,81,82] As shown in Table 1, our
method shows 64.5% MOTA and 6.54 Hz tracking speed which are competitive scores
compared to recent published tracking methods in the MOT16 benchmark. This result
indicates that our tracker with the global affinity models and object constraint algorithm
indeed achieves a high-quality MOT.
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Table 1. Comparison with recent multi-object tracking methods on the 2016 MOT benchmark chal-
lenge. Results are sorted by the setting and MOTA score. More details can be found in the MOT
benchmark website (https://motchallenge.net/results/MOT16/, accessed on 28 September 2022).
DPM [83] denotes original public detections provided by MOT16. However, detections marked
with other names (e.g., FCOS, Faster R-CNN, etc.) mean the refined detections by applying the
corresponding detectors.

Method Setting Detections MOTA ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz ↑
Tube_TK [82] Online FCOS [84] 64.0% 59.4% 33.5% 19.4% 10,962 53,626 1117 1.0
TMOH [61] Online Faster R-CNN [62] 63.2% 63.5% 27.0% 31.0% 3122 63,376 635 0.7
MOTRF [81] Online YOLOv3 [64] 57.9% 41.7% 28.5% 22.1% 8196 66,538 2051 11.1
LSST16O [13] Online DPM [83] 49.2% 56.5% 13.4% 41.4% 7187 84,875 606 2.0

KCF16 [11] Online DPM [83] 48.8% 47.2% 15.8% 38.1% 5875 86,567 906 0.1
SOT + MOT [14] Online DPM [83] 46.4% - 18.6% 46.5% 12,491 87,855 404 0.8

DMAN [15] Online DPM [83] 46.1% 46.1% 17.4% 42.7% 7909 89,874 532 2.4
oICF [85] Online DPM [83] 43.2% 49.3% 11.3% 48.5% 6651 96,515 381 0.4

AM_ADM [32] Online DPM [83] 40.1% 43.8% 7.1% 46.2% 8503 99,891 789 5.8
HISP_DAL [19] Online DPM [83] 37.4% 30.5% 7.6% 50.9% 3222 108,865 2101 3.3

JCmin_MOT [77] Online DPM [83] 36.7% 28.6% 7.5% 54.4% 2936 111,890 667 14.8
GM_PHD_DAL [76] Online DPM [83] 35.1% 26.6% 7.0% 51.4% 2350 111,886 4047 3.5
GM_PHD_N1T [78] Online DPM [83] 33.3% 22.6% 7.2% 51.4% 1750 116,452 3499 9.9

ApLift [28] Batch Faster R-CNN [62] 61.7% 66.1% 34.3% 31.2% 9168 60,180 495 0.6
Lif_T [2] Batch Faster R-CNN [62] 61.3% 64.7% 23.2% 34.5% 4844 65,401 389 0.5
TPM [29] Batch DPM [83] 51.3% 47.9% 18.7% 40.8% 2701 85,504 569 0.8

MHT_bLSTM [5] Batch DPM [83] 42.1% 47.8% 14.9% 44.4% 11,637 93,172 753 1.8
LINF1_16 [6] Batch DPM [83] 41.0% 45.7% 11.6% 51.3% 7896 99,224 430 4.2
GMMCP [79] Batch DPM [83] 38.1% 35.5% 8.6% 50.9% 6607 105,315 937 0.5

LTTSC-CRF [80] Batch DPM [83] 37.6% 42.1% 9.6% 55.2% 11,969 101,343 481 0.6

MOT_GM (Proposed) Online DPM [83] 43.2% 51.5% 9.0% 54.5% 3481 99,532 484 10.31
MOT_GM (Proposed) Online CenterNet [86] 64.5% 70.9% 36.4% 20.7% 21,182 42,730 816 6.54

7.5. Ablation Studies
7.5.1. Comparison with the Baseline MOT Method

We compare our proposed method with our baseline confidence-based MOT [9]
to verify the effectiveness of our global models. For fair comparison, we only use the
2016 MOT challenge train dataset. Appearance and motion models of the baseline are a
144-dimension color histogram feature and Kalman filter, respectively. This appearance
model extracts appearance features from image patches, and computes similarity distance
using the Bhattacharyya distance. The motion model of the baseline only uses Equation (7)
as mentioned in Section 3.2. The baseline MOT and our proposed methods use the same
shape model. In this ablation study, we do not exploit our object constraint learning method
to verify the effectiveness of our affinity model learning method.

The comparison result is shown in Table 2. Our proposed MOT method shows an
improved tracking accuracy for the most metrics. We improve MOTA and MOTP scores
by 3.21% and 0.79%, respectively. Our proposed method also suppresses FP, FN, and ID
switch than baseline due to the higher appearance discrimiability than the color histogram
based appearance model. The baseline shows the faster tracking speed than our proposed
method. Because their models have lower computational costs than ours. However, when
considering the trade-off between tracking accuracy and speed, our method is more com-
petitive than the baseline. To sum up, adding our global models to the baseline increases
the MOT accuracy significantly without drastic decrease in tracking speed.

https://motchallenge.net/results/MOT16/
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Table 2. Comparison with the baseline confidence-based multi-object tracking method on 2016 MOT
benchmark train dataset.

Baseline Multi-Object Tracking Method

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz ↑
MOT16-02 25.76% 75.01% 32.00% 3.70% 53.70% 192 12,982 66 16.33
MOT16-04 43.52% 76.89% 40.29% 9.64% 36.14% 1277 25,355 229 12.57
MOT16-05 29.41% 74.92% 38.96% 2.40% 51.20% 313 4472 28 21.08
MOT16-09 56.91% 73.98% 54.32% 28.00% 8.00% 133 2098 34 16.57
MOT16-10 37.24% 73.75% 46.53% 11.11% 48.15% 420 7274 37 16.19
MOT16-11 51.32% 78.16% 56.08% 17.39% 50.72% 270 4179 17 16.24
MOT16-13 19.15% 71.92% 28.84% 5.61% 66.36% 240 8993 24 17.41

Total 37.84% 75.90% 40.89% 8.51% 49.71% 2845 65,353 435 16.02

Proposed Method

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz ↑
MOT16-02 26.31% 75.02% 32.90% 7.41% 55.56% 90 13,001 51 13.11
MOT16-04 50.85% 78.05% 61.94% 15.66% 34.94% 165 23,170 38 8.39
MOT16-05 28.84% 74.90% 41.33% 1.60% 55.20% 242 4582 28 18.09
MOT16-09 57.24% 74.30% 55.01% 20.00% 12.00% 86 2139 23 14.70
MOT16-10 38.11% 74.40% 44.91% 12.96% 50.00% 238 7350 34 13.25
MOT16-11 51.58% 78.02% 58.52% 14.49% 52.17% 178 4246 18 14.82
MOT16-13 17.90% 72.75% 27.63% 3.94% 69.16% 129 9261 10 14.91

Total 41.05% 76.69% 51.00% 8.70% 51.84% 1129 63,749 202 12.87

7.5.2. Global Object Model Comparison

To prove the effectiveness of our global object models in terms of MOT accuracy, we
implement different versions of multi-object tracking methods with/without our global
models. The description of the implemented methods with our global models are given as:

(M1) Baseline multi-object tracking method;
(M2) Combining global relation motion model with M1;
(M3) Combining global appearance and global relation motion models with M1.

For fair comparison, we only use the 2016 multi-object tracking benchmark challenge
train set (MOT16 train set), and the same confidence-based data association method with
same hyper parameters. Additionally, the object contraint learning is not exploited for this
comparison. The comparison results are presented in Table 3. Color and deep represent
the color histogram appearance model and our global appearance model, respectively.
The motion models are divided as self and relation models as we described in Section 3.2.

Table 3. Comparison with baseline MOT algorithm and MOT with our proposed global models.

Method Appearance Model Motion Model MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
M1 Color Self 37.84% 75.90% 40.89% 8.51% 49.71% 2845 65,353 435
M2 Color Self, Relation 40.61% 76.54% 48.20% 8.90% 50.68% 1467 63,828 280
M3 Deep Self, Relation 41.05% 76.69% 51.00% 8.70% 51.84% 1129 63,749 202

When comparing (M1) with (M2)–(M3), the baseline reduces the the MOT accuracy.
The most metric scores except for ML decrease. Note that, the comparison result between
(M1) and (M2) shows that our global relation motion model contributes to enhancing
MOT results. In particular, our proposed motion model reduces FP, FN, and ID switch
successfully. This result shows that using self and relation motions is more effective for
improving trajectory estimation than using the self motion only. (M3) shows the best MOT
performance among these methods. Especially, ID switch of (M3) decreases considerably
compared to (M2). It shows that our global appearance model handles appearance changes
better which is often caused by occlusion. To sum up, this experiment proves that our
proposed global models can improve the quality of MOT results.
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7.5.3. Appearance Model Comparison

Table 4 shows the comparison results of appearance models with different embedding
feature dimensions. As shown, extracting a 64-dimensional embedding feature shows better
accuracy compared to others. However, we need to consider both accuracy and speed in
high-quality multi-object tracking. In order to find out the best sweet spot [32], we compare
multiplied scores of MOTA and Hz. As a result, we find that extracting 128-dimensional
embedding features show the better score than others. From this comparison, we set the
dimension of the embedding vector to 128.

Table 4. Comparison of appearance models trained with different feature dimensions.

Dimension MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Hz ↑ MOTA× Hz

64 40.50% 76.67% 49.96% 8.32% 52.42% 1273 64,187 234 13.36 541.08
128 40.36% 76.69% 49.93% 7.74% 52.80% 1281 64,328 242 13.41 541.28
256 39.31% 76.65% 49.08% 6.58% 53.58% 1524 65,160 234 13.34 524.40

7.5.4. Motion Model Comparison

We show the effectiveness of combining our relation motion and self motion models.
The self motion model only exploits a Kalman filter [44] and Equation (7) for calculating
the motion affinity. The relation motion model uses only our global relation motion model
in Section 5 and Equation (9) for computing a motion affinity score. Lastly, the combined
motion model utilizes both motion models and Equation (6) to calculate the motion affinity.

The result is shown in Table 5. Comparing with self motion model and relation motion
model results, the self motion model shows slightly a better tracking accuracy. The one
possible reason is the future trajectory estimation results have possibility to be discordant
due to abrupt motion and relation changes. However, our global relation motion model
has a distinct advantage that is not necessary to learn and update this model per frame as
we mentioned in Section 3.2. Therefore, we can ensure the improvement of tracking speed.
We prove the advantage of our global relation motion model in Table 6.

The combined motion model shows higher multi-object tracking accuracy for the most
metrics. This result represents that using combined self and relation motions is effective
for improving multi-object tracking. The ID Sw. number of the combined model is higher
slightly than other motion models. However, we exploit the advantages of each self and
relative motion models by combining them for the data association. In addition, our weight
parameter cM controls the weights of self and relation motions appropriately when evalu-
ating the motion affinity Equation (6). As a result, we show that our proposed combined
motion models with the weight parameter improve multi-object tracking accuracy the most.

Table 5. Comparison of multi-object tracking performance with self motion, relation motion, and com-
bined motion models.

Method MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓
Self motion model 40.81% 76.69% 8.12% 51.64% 1166 63,987 196

Relation motion model 40.68% 76.78% 8.70% 52.61% 1126 64,171 201
Combined motion model 41.05% 76.69% 8.70% 51.84% 1129 63,749 202



Sensors 2022, 22, 7943 21 of 28

Table 6. The MOT performance comparison between multi-object tracking methods with/without
the proposed object constraint learning.

MOT without Object Constraint Learning

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Appearance
Updates ↓

Motion
Updates ↓ Hz ↑

MOT16-02 26.31% 75.02% 32.90% 7.41% 55.56% 90 13,001 51 600 600 13.11
MOT16-04 50.85% 78.05% 61.94% 15.66% 34.94% 165 23,170 38 1050 1050 8.39
MOT16-05 28.84% 74.90% 41.33% 1.60% 55.20% 242 4582 28 837 837 18.09
MOT16-09 57.24% 74.30% 55.01% 20.00% 12.00% 86 2139 23 525 525 14.70
MOT16-10 38.11% 74.40% 44.91% 12.96% 50.00% 239 7350 34 654 654 13.25
MOT16-11 51.58% 78.02% 58.52% 14.49% 52.17% 178 4246 18 900 900 14.82
MOT16-13 17.90% 72.75% 27.63% 3.74% 69.16% 129 9261 10 729 746 14.91

Total 41.05% 76.69% 51.00% 8.70% 51.84% 1129 63,749 202 5295 5295 12.87

MOT with Object Constraint Learning

Sequence MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓ Appearance
Updates ↓

Motion
Updates ↓ Hz ↑

MOT16-02 25.30% 75.44% 31.07% 7.41% 57.41% 111 13,167 44 389 227 13.34
MOT16-04 50.53% 78.03% 60.85% 15.66% 34.94% 202 23,280 43 772 318 8.92
MOT16-05 26.37% 74.86% 37.41% 0.80% 55.20% 297 4689 34 334 316 18.82
MOT16-09 56.13% 74.14% 54.48% 16.00% 12.00% 82 2193 31 193 191 15.12
MOT16-10 37.42% 74.32% 46.41% 11.11% 51.85% 237 7425 47 479 241 13.78
MOT16-11 50.51% 77.96% 56.68% 11.59% 55.07% 205 4309 26 255 330 15.46
MOT16-13 17.65% 72.45% 26.88% 3.73% 70.09% 147 9265 17 433 267 15.44

Total 40.36% 76.69% 49.93% 7.74% 52.80% 1281 64,328 242 2855 1890 13.41

7.5.5. Object Constraint Learning

To prove the effectiveness of our object constraint learning introduced in Section 6, we
compare MOT methods with/without our object constraint algorithm. For fair comparison,
we use MOT16 train set, and the same confidence-based data association method with
same hyper parameters. We set µ to 0.6 as we mentioned in Section 6.

Table 6 shows the results. The MOTA scores are improved by 0.69% when not using
the object constraint learning. Other metric scores, such as IDF1, MT, FP, FN, and ID switch,
also increase. However, we can obtain an almost similar accuracy by using our constraint
learning although not updating models at every frame.

For the tracking speed, our learning algorithm shows the obvious gain since the
number of appearance model updates deceases prominently. As shown in the table, the up-
date number decreases dramatically when applying our learning algorithm. In particular,
MOT16-05 (837→ 334), MOT16-09 (525→ 193) and MOT16-11 (900→ 255) sequences show
the results. Therefore, we confirm that our object constraint learning determines the timing
for model update successfully based on model discriminability.

7.6. Qualitative Results

Figures 8 and 9 show the tracking results from our proposed global appearance and
motion models on the 2016 MOT benchmark train and test dataset, respectively. Our pro-
posed method successfully conducts multi-object tracking. Especially, our proposed method
can track objects robustly in crowded and occluded sequences, such as Figures 8b and 9b.

Figure 10 describes the motion trajectory estimation results on the 2016 benchmark
dataset. Even though several scenes are captured with low frame rates and with a moving
camera (e.g., MOT16-05 and MOT16-10), our global relation motion model can estimate
accurate object trajectories during multi-object tracking.
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(a) MOT16-02 (b) MOT16-04

(c) MOT16-05 (d) MOT16-09

(e) MOT16-10 (f) MOT16-11

(g) MOT16-13

Figure 8. (a–g) Tracking results using the proposed MOT method with global appearance and motion
models on the 2016 MOT benchmark train dataset.
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(a) MOT16-01 (b) MOT16-03

(c) MOT16-06 (d) MOT16-07

(e) MOT16-08 (f) MOT16-12

(g) MOT16-14

Figure 9. (a–g) Tracking results using the proposed MOT method with global appearance and motion
models on the 2016 MOT benchmark test dataset.
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(a) MOT16-05

(b) MOT16-09

(c) MOT16-10

Figure 10. Predicted object motion trajectories on several sequences. At current frame t, the predicted
motions from t + 1 (blue) to t + ∆est (orange) are depicted with different dot colors on each sequence.

8. Conclusions

In this paper, we have proposed an effective multi-object tracking method by using
the proposed global appearance and motion models based on our object constraint learning
algorithm. As a result, our global object models successfully improve the tracking accuracy
since they demonstrate the high appearance discriminability and accurate trajectory esti-
mations. In addition, our object constraint learning algorithm alleviates the computational
costs of learning object models in online. Based on the proposed methods, we can enhance
tracking accuracy and speed together. Moreover, our global appearance and motion models
can be compatible with other multi-object tracking methods because they do not rely on
system architecture. The object constraint learning is easily applicable for other methods
since affinity evaluation is only required.

To verify our proposed method one-by-one, we have provided extensive evaluations
and ablation studies. Especially, we successfully show that our object constraint learning
algorithm enhances tracking speed while maintaining the MOT accuracy. Furthermore,
our method achieves the enhanced multi-object tracking performance on the MOT16
benchmark challenge. From the comparison with other state-of-the-art tracking methods,
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we have verified that our method can achieve a better tracking accuracy and speed. In
addition, we expect that our proposed method can be exploited for other multi-object
tracking methods, and applied for various fields in real world (e.g., autonomous driving
and surveillance system).

For the future work, we focus on improving global models to consider not only the
relation between objects but global contexts in spatio-temporal domain. To this end, a trans-
former model can be adopted since it is effective to learn the global context information.
By exploiting the global contextual feature from the transformer, tracking accuracy could
be improved further.
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